(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
w(r(x)) → r(w(x))
b(r(x)) → r(b(x))
b(w(x)) → w(b(x))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
w(r(x)) →+ r(w(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / r(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
w(r(x)) → r(w(x))
b(r(x)) → r(b(x))
b(w(x)) → w(b(x))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
w(r(x)) → r(w(x))
b(r(x)) → r(b(x))
b(w(x)) → w(b(x))
Types:
w :: r → r
r :: r → r
b :: r → r
hole_r1_0 :: r
gen_r2_0 :: Nat → r
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
w,
bThey will be analysed ascendingly in the following order:
w < b
(8) Obligation:
TRS:
Rules:
w(
r(
x)) →
r(
w(
x))
b(
r(
x)) →
r(
b(
x))
b(
w(
x)) →
w(
b(
x))
Types:
w :: r → r
r :: r → r
b :: r → r
hole_r1_0 :: r
gen_r2_0 :: Nat → r
Generator Equations:
gen_r2_0(0) ⇔ hole_r1_0
gen_r2_0(+(x, 1)) ⇔ r(gen_r2_0(x))
The following defined symbols remain to be analysed:
w, b
They will be analysed ascendingly in the following order:
w < b
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol w.
(10) Obligation:
TRS:
Rules:
w(
r(
x)) →
r(
w(
x))
b(
r(
x)) →
r(
b(
x))
b(
w(
x)) →
w(
b(
x))
Types:
w :: r → r
r :: r → r
b :: r → r
hole_r1_0 :: r
gen_r2_0 :: Nat → r
Generator Equations:
gen_r2_0(0) ⇔ hole_r1_0
gen_r2_0(+(x, 1)) ⇔ r(gen_r2_0(x))
The following defined symbols remain to be analysed:
b
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol b.
(12) Obligation:
TRS:
Rules:
w(
r(
x)) →
r(
w(
x))
b(
r(
x)) →
r(
b(
x))
b(
w(
x)) →
w(
b(
x))
Types:
w :: r → r
r :: r → r
b :: r → r
hole_r1_0 :: r
gen_r2_0 :: Nat → r
Generator Equations:
gen_r2_0(0) ⇔ hole_r1_0
gen_r2_0(+(x, 1)) ⇔ r(gen_r2_0(x))
No more defined symbols left to analyse.